2020/1/5 1:11:17
文章来源:阿里巴巴达摩院 ; 分析评论:半导体产业观察
评论:2019年,平头哥先后发布了全球首个性能突破7.0(7.1
Coremark/MHz)大关的RISC-V处理器玄铁910,由SoC架构、处理器、各类IP、操作系统、软件驱动和开发工具等模块构成的“无剑”SoC平台和全球最高性能的
AI
推理芯片含光800。再加上阿里巴巴在应用生态、算法、软件等方面的深厚积累,阿里对芯片产业有着很多其他厂商无法比拟的洞察力,因此,这份报告极具参考价值。
2020是如此科幻的年份,步入2020年,仿佛回到久违的未来。科技浪潮新十年开启,蓄势已久的智能革命将迎来颠覆性的技术变局。达摩院今天发布2020十大科技趋势,希望与你共同见证那些期待已久或从未料想的变化,并且循着技术演进的曲线 ,找到我们的来处和去向。
趋势一、人工智能从感知智能向认知智能演进
【趋势概要】人工智能已经在“听、说、看”等感知智能领域已经达到或超越了人类水准,但在需要外部知识、逻辑推理或者领域迁移的认知智能领域还处于初级阶段。认知智能将从认知心理学、脑科学及人类社会历史中汲取灵感,并结合跨领域知识图谱、因果推理、持续学习等技术,建立稳定获取和表达知识的有效机制,让知识能够被机器理解和运用,实现从感知智能到认知智能的关键突破。
趋势二、计算存储一体化突破AI算力瓶颈
【趋势概要】冯诺伊曼架构的存储和计算分离,已经不适合数据驱动的人工智能应用需求。频繁的数据搬运导致的算力瓶颈以及功耗瓶颈已经成为对更先进算法探索的限制因素。类似于脑神经结构的存内计算架构将数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大提高计算并行度和能效。计算存储一体化在硬件架构方面的革新,将突破AI算力瓶颈。
趋势三、工业互联网的超融合
【趋势概要】5G、IoT设备、云计算、边缘计算的迅速发展将推动工业互联网的超融合,实现工控系统、通信系统和信息化系统的智能化融合。制造企业将实现设备自动化、搬送自动化和排产自动化,进而实现柔性制造,同时工厂上下游制造产线能实时调整和协同。这将大幅提升工厂的生产效率及企业的盈利能力。对产值数十万亿乃至数百万亿的工业产业而言,提高5%-10%的效率,就会产生数万亿人民币的价值。
趋势四、机器间大规模协作成为可能
【趋势概要】传统单体智能无法满足大规模智能设备的实时感知、决策。物联网协同感知技术、5G通信技术的发展将实现多个智能体之间的协同——机器彼此合作、相互竞争共同完成目标任务。多智能体协同带来的群体智能将进一步放大智能系统的价值:大规模智能交通灯调度将实现动态实时调整,仓储机器人协作完成货物分拣的高效协作,无人驾驶车可以感知全局路况,群体无人机协同将高效打通最后一公里配送。
趋势五、模块化降低芯片设计门槛
【趋势概要】传统芯片设计模式无法高效应对快速迭代、定制化与碎片化的芯片需求。以RISC-V为代表的开放指令集及其相应的开源SoC芯片设计、高级抽象硬件描述语言和基于IP的模板化芯片设计方法,推动了芯片敏捷设计方法与开源芯片生态的快速发展。此外,基于芯粒(chiplet)的模块化设计方法用先进封装的方式将不同功能“芯片模块”封装在一起,可以跳过流片快速定制出一个符合应用需求的芯片,进一步加快了芯片的交付。
【趋势解读】AIoT时代世间万物逐步走向在线化、数据化、智能化,不仅将带来芯片需求的爆发式增长,形成巨大的市场空间,同时其碎片化和定制化的特点,也对芯片设计模式提出了新的要求。芯片行业传统的比投资、比品牌、比工艺的“大鱼吃小鱼”格局,正逐渐被比市场灵敏度、比需求适配、比速度和价格的“快鱼吃慢鱼”格局所取代。在应用驱动的趋势下,谁能快速推出专用芯片,就能抢占市场先机。越来越多的系统和应用服务公司在推出专用芯片,例如苹果、谷歌、阿里巴巴、亚马逊、特斯拉等应用企业开始进入芯片设计领域,自研或联合开发芯片产品。
现有的芯片设计模式存在研发成本高、周期长等问题,开发一款中档芯片,往往需要数百人以及数千万甚至上亿美元的研发投入,不仅严重阻碍了芯片创新速度。特别是随着芯片制程从10nm缩减到7nm,接下来还要进一步缩减到5nm,每一次制程缩减所需要的成本和开发时间都在大幅提升。受到成本和市场压力的驱使,半导体产业在积极寻找新的芯片开发模式,来满足低成本、快速的需求。基于IP的可重用的设计方法学,解决了芯片功能模块重复设计的问题,使得芯片可以以模块化的方式进行设计,不同功能的IP模块可以在不同的芯片中被重用,这种方法推动了系统芯片(Syetem-on-Chip)的普及。近年来,以RISC-V为代表的开放指令集及其相应的开源SoC芯片设计、以Chisel为代表的高级抽象硬件描述语言和基于IP的模块化模板化的芯片设计方法,推动了芯片敏捷设计方法与开源芯片生态的快速发展,越来越多芯片企业开始尝试开源硬件架构进行设计。
面向未来,一种“芯粒”(Chiplet)的模块化设计方法正在成为新的行业趋势。这种方法通过对复杂功能进行分解,开发出多种具有单一特定功能的“芯粒”(Chiplet),如实现数据存储、计算、信号处理、数据流管理等功能。利用这些不同功能的Chiplets进行模块化组装,将不同的计算机元件集成在一块硅片上,来实现更小更紧凑的计算机系统结构。以前设计一个SoC,需要从不同的IP供应商购买IP,包括软核IP或硬核IP,再结合自家研发的模块,集合成一个SoC,然后在某个制造工艺节点上完成芯片设计和生产的完整流程。未来计算机的系统结构,可能不是由单独封装的芯片制造的,而是在一块较大的硅片上互连成芯片网络的Chiplets制造的。模块化的芯片技术最终可以实现像搭积木一样“组装”芯片。
趋势六、规模化生产级区块链应用将走入大众
【趋势概要】区块链BaaS(Blockchain as a Service)服务将进一步降低企业应用区块链技术的门槛,专为区块链设计的端、云、链各类固化核心算法的硬件芯片等也将应运而生,实现物理世界资产与链上资产的锚定,进一步拓展价值互联网的边界、实现万链互联。未来将涌现大批创新区块链应用场景以及跨行业、跨生态的多维协作,日活千万以上的规模化生产级区块链应用将会走入大众。
趋势七、量子计算进入攻坚期
【趋势概要】2019年“量子霸权”之争让量子计算在再次成为世界科技焦点。超导量子计算芯片的成果,增强了行业对超导路线及对大规模量子计算实现步伐的乐观预期。2020年量子计算领域将会经历投入进一步增大、竞争激化、产业化加速和生态更加丰富的阶段。作为两个最关键的技术里程碑,容错量子计算和演示实用量子优势将是量子计算实用化的转折点。未来几年内,真正达到其中任何一个都将是十分艰巨的任务,量子计算将进入技术攻坚期。
趋势八、新材料推动半导体器件革新
【趋势概要】在摩尔定律放缓以及算力和存储需求爆发的双重压力下,以硅为主体的经典晶体管很难维持半导体产业的持续发展,各大半导体厂商对于3纳米以下的芯片走向都没有明确的答案。新材料将通过全新物理机制实现全新的逻辑、存储及互联概念和器件,推动半导体产业的革新。例如,拓扑绝缘体、二维超导材料等能够实现无损耗的电子和自旋输运,可以成为全新的高性能逻辑和互联器件的基础;新型磁性材料和新型阻变材料能够带来高性能磁性存储器如SOT-MRAM和阻变存储器。
【趋势解读】半个世纪以来半导体产业都在竭力遵循摩尔定律,在取得巨大经济效益的同时也从根本上改变了人类社会的发展进程。人工智能及大数据兴起为云端及终端装置带来更多创新的同时,也使得半导体产业的发展面临着摩尔定律放缓导致的产品升级困难以及大数据导致的算力和存储需求爆发的双重压力。以硅为主体的传统晶体管缩放已经越来越难以维持,从而难以实现半导体产业的持续发展。
虽然新的材料和器件架构如高介电常数介电层(high-k dielectrics)、鳍式晶体管(FinFET)以及铜质导线,扩展了传统半导体厂商的选择并逐步被采用成为主流,但并没有从根本上改变传统的逻辑、存储及互联的原理以及这些器件所面临的物理原理上的困境。各大半导体厂商对于3纳米以下的芯片走向都没有明确的答案,但一个可以确定的趋势是越来越多的新材料将会被应用在半导体产业中,这些新材料将会通过新的物理机制实现全新的逻辑、存储、及互联概念和器件。
评论:台积电曾表示,包括黑磷、硫化钼、硫化钨和铋等在内的新型二维材料系统因为具有凡德瓦尔结合以及电子结构特性与原子层数或尺度、形貌密切相关等特性,他们将在3nm节点以下的集成技术中扮演重要的角色
从近期来看,新材料如锗和III-V族材料可能会代替传统的硅作为晶体管的通道材料以提升晶体管的速度。新的介电材料如铁电材料可能会导致超陡的亚阈值坡度以降低晶体管的能耗。新的金属材料如钴可能会替代钨和铜作互联导线以增强稳定性和减缓信号延迟。二维材料或外延生长的纳米层材料可能会导致3D堆集的架构以增加芯片的密度。这些器件的物理机制清楚,当然大规模应用还需要半导体厂商来解决工艺实现、工程配套等方面的挑战。
评论:III-V族材料也有可能会代替传统的硅作为晶体管的通道材料以提升晶体管的速度。因为有研究表明,铟镓砷(InGaAs),砷化镓(GaAs)和砷化铟(InAs)与FinFET和GAAFET的集成在更小的节点处表现出优异的性能;而铁电等介电材料的引入可能会实现超陡的亚阈值坡度以降低晶体管的能耗;钴也有可能会替代钨和铜作互联导线以增强稳定性和减缓信号延迟。虽然下一代晶体管材料的选择还未有最终定论,但用新材料造芯已经是不可逆的趋势。
从更长远的角度来看,更具挑战性的材料及全新的物理机制将是半导体产业能够保持甚至加速指数式的增长的关键。新物理机制是全新的高性能的逻辑和互联器件的基础,比如基于量子效应的强关联材料和拓扑绝缘体、新发现的二维材料中魔幻角度下的超导现象等会导致无损耗的电子和自旋输运。利用新的磁性材料的自旋-轨道耦合现象可以制备全新的高性能磁性存储器如SOT-MRAM,而利用新的阻变现象使得全新的高密度、高稳定性的阻变存储器(RRAM)成为可能。虽然这些全新的工作机制还处在早期的探索中,但他们能从根本上解决传统器件在物理原理层面所受到的限制,实现对摩尔定律的突破。
新材料和新机制将会对传统的半导体产业进行全面洗牌,包括材料的生长、器件的制备以及电路的工作原理都会发生根本性的变化。这对设备厂商,晶圆厂及电路设计公司都会带来历史性的挑战和机遇,也会为新兴的公司及产业提供振奋人心的发展机会。
评论:过去数十年半导体制造工艺的演进过程中,硅芯片层遭遇了多次挑战。
挑战一、
在45nm的时候,二氧化硅的绝缘层的漏电达到了无法容忍的地步,但当时的产业界HKMG工艺,用high-k介质取代二氧化硅,把传统的多晶硅—二氧化硅—单晶硅结构变成了金属—high K—单晶硅的结构,让晶体管可以继续微缩。
标准晶体管与HKMG晶圆的对比
挑战二、
到了22nm的时候,沟道关断的漏电也让工程师们疲于应对,但胡正明教授推出的FinFET,突破了传统MOSFET的限制,让原本的源极和漏极之间的沟道变成板状,将栅极与通道之间的接触面积变大,这样的话就可以将电子在源极和漏极之间的流动变得更可控。这个伟大的发明帮产业度过了又一个“难关”。
传统平面晶体管和3D FinFET的对比
挑战三、
芯片工艺正在迈入接近物理极限的5nm,要进一步发展,就必须从根源上做出改变。
相关分析显示,虽然FinFET的出现,解决了20nm工艺以下的漏电问题,但因为FinFET是一个3D结构,这就带来了散热的问题。那就意味着如果我们进一步缩小FinFET的晶体管尺寸,不但漏电问题会继续出现,同时还会带来自加热(self-heating)和阈值平坦化(threshold flattening)等问题,为此探索新材料就成为了产业共识。这也是三星在今年五月份的晶圆制造论坛上宣布在3nm的时候选择GAA(gate all around)为下一代晶体管的原因。
值得一提的,除硅材料外,GAA晶体管还可以使用如InGaAs和锗纳米线等材料,借助这些材料能让晶体管中的电子更好的移动性。
GAA和FinFET的对比
(SISC关联内容:在3nm节点,三星将从FinFET晶体管转向GAA环绕栅极晶体管工艺,其中3nm工艺使用的是第一代GAA晶体管,官方称之为3GAE工艺。)
基于全新的GAA晶体管结构,三星利用纳米片设备制造了MBCFET(Multi-Bridge-Channel FET,多桥通道场效应管),该技术可以显著增强晶体管性能,主要取代FinFET晶体管技术。此外,MBCFET技术还能兼容现有的FinFET制造工艺的技术及设备,从而加速工艺开发及生产。
趋势九、保护数据隐私的AI技术将加速落地
【趋势概要】数据流通所产生的合规成本越来越高。使用AI技术保护数据隐私正在成为新的技术热点,其能够在保证各方数据安全和隐私的同时,联合使用方实现特定计算,解决数据孤岛以及数据共享可信程度低的问题,实现数据的价值。
趋势十、云成为IT技术创新的中心
【趋势概要】随着云技术的深入发展,云已经远远超过IT基础设施的范畴,渐渐演变成所有IT技术创新的中心。云已经贯穿新型芯片、新型数据库、自驱动自适应的网络、大数据、AI、物联网、区块链、量子计算整个IT技术链路,同时又衍生了无服务器计算、云原生软件架构、软硬一体化设计、智能自动化运维等全新的技术模式,云正在重新定义IT的一切。广义的云,正在源源不断地将新的IT技术变成触手可及的服务,成为整个数字经济的基础设施。
声明:本网站部分文章转载自网络,转发仅为更大范围传播。 转载文章版权归原作者所有,如有异议,请联系我们修改或删除。联系邮箱:viviz@actintl.com.hk, 电话:0755-25988573